Chemistry 101 Laboratory Fall 2005-2006

Lecture 9

Solubility as a Function of Temperature

Purpose

- To determine the solubility of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ in water at three different temperatures by titrating saturated solutions of the acid with a standard solution of NaOH .

Equation Involved and Calculations

$\mathbf{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{aq})}+2 \mathbf{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=$ moles of $\mathrm{NaOH} / 2$ Moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=(\mathrm{M} \times \mathrm{V}) \mathrm{NaOH} / 2$ Mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{mol} \mathrm{H} \mathrm{C}_{2} \mathrm{O}_{4} \times 90.04 \mathrm{~g} / \mathrm{mol}$

Solubility of oxalic acid $(\mathbf{g} / \mathbf{1 0 0} \mathbf{~ m L})=\frac{\text { g oxalic acid }}{\mathbf{m L} \text { oxalic acid }} \times 100$

Solubility

- The maximum amount of solute that can be dissolved in a given quantity of solvent at a specific temperature.
Therefore it is the concentration of solute in a saturated solution.
- Units: $\mathbf{g} / \mathbf{1 0 0} \mathbf{m L}$ (g of solute/100 mL of solution moles/L (moles of solute/liter of solution)

Hydration

Example: $\mathrm{NaCl}_{(s)} \quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{Cr}_{(a q)}$ Hydration is the process in which an ion is surrounded by water molecules arranged in a specific manner.

Heat of solution: $\Delta \mathbf{H}_{\text {(sol) }}$

- Heat of solution, $\Delta \mathrm{H}_{\text {(sol), }}$, is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.
- $\Delta \mathrm{H}_{\text {(sol) }}$ is positive for endothermic (heat absorbing) processes and negative for exothermic (heat generating) processes.

Heat of solution: $\Delta \mathrm{H}_{\text {(sol) }}$ (cont'd)

$\Delta H_{\text {(sol) }}=$ lattice energy + hydration energy

$$
\Delta H(\text { sol })=L . E+H \cdot E
$$

- Lattice energy (L.E): energy needed to separate one mole of a solid ionic compound into gaseous ions.
- Hydration energy (H.E): energy released when an ion is surrounded by water molecules in a specific manner.

The Solution Process for NaCl

Δ Hsoln $=$ Step $1+$ Step $2=788-784=4 \mathrm{~kJ} / \mathrm{mol}$

Conclusion

$\Delta H($ sol $)=L . E+H . E$

- If H.E is greater than L.E, energy is released and the solution process is exothermic.
Therefore solubility decreases with an increase in temperature.
- If L.E is greater than H.E, energy is absorbed and the solution process is endothermic. Therefore solubility increases with an increase in temperature.

Temperature and Solubility

Solid solubility and temperature

solubilitity decerass wxilth increasing temperature

Experiment

- Find the solubility of oxalic acid ($\mathrm{g} / 100 \mathrm{~mL}$) at three different temperatures.
- A saturated solution of oxalic acid at room temperature will be provided.

a- Solubility at room temperature

- Get 20 mL of the saturated oxalic acid solution.
- Measure the temperature.
- Pipet 10 mL of the above solution into an Erlenmeyer flask and titrate against NaOH using phenolphthalein indicator

b- Solubility at $0^{\circ} \mathrm{C}$

i - Preparation of a saturated solution at $0^{\circ} \mathrm{C}$:

- Transfer to a large test tube 20 mL of the provided saturated oxalic acid solution and 10 mL of distilled water.
- Cool the test tube in 400 mL beaker containing ice.
- Stir and wait.
- Measure the temperature (should be around $0^{\circ} \mathrm{C}$).

ii -Titration:

- Pipet 10 mL of the above saturated solution carefully (leaving the solid behind) into an Erlenmeyer flask.
- Add 2 drops of phenolphthalein and titrate against NaOH .

c- Solubility at $40^{\circ} \mathrm{C}$

i - preparation of a saturated solution at $40^{\circ} \mathrm{C}$:

- Prepare water bath at $50^{\circ} \mathrm{C}$ using 400 mL beaker.
- Transfer 30 mL of the sat. oxalic acid to the large test tube.
- Place the test tube in the water bath.
- Add solid oxalic acid while stirring till no more dissolves.
- Maintain the temperature around $40^{\circ} \mathrm{C}$ (add cold water).
- Measure the temperature.
- Decant 10 mL into a graduated cylinder, add 30 mL of water and homogenize.

ii- Titration:

- Pipet 10 mL of the above homogenized solution and titrate against NaOH using phenolphthalein indicator.
- Read the volume of NaOH and multiply by 4.

